Potential Theory for Schrödinger operators on finite networks

نویسندگان

  • Enrique Bendito
  • Ángeles Carmona
چکیده

We aim here at analyzing the fundamental properties of positive semidefinite Schrödinger operators on networks. We show that such operators correspond to perturbations of the combinatorial Laplacian through 0-order terms that can be totally negative on a proper subset of the network. In addition, we prove that these discrete operators have analogous properties to the ones of elliptic second order operators on Riemannian manifolds, namely the monotonicity, the minimum principle, the variational treatment of Dirichlet problems and the condenser principle. Unlike the continuous case, a discrete Schrödinger operator can be interpreted as an integral operator and therefore a discrete Potential Theory with respect to its associated kernel can be built. We prove that the Schrödinger kernel satisfies enough principles to assure the existence of equilibrium measures for any proper subset. These measures are used to obtain systematic expressions of the Green and Poisson kernels associated with Dirichlet problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Scattering Theory for One-dimensional Schrödinger Operators with Steplike Periodic Potentials

We develop direct and inverse scattering theory for one-dimensional Schrödinger operators with steplike potentials which are asymptotically close to different finite-gap periodic potentials on different half-axes. We give a complete characterization of the scattering data, which allow unique solvability of the inverse scattering problem in the class of perturbations with finite second moment.

متن کامل

Inverse Scattering Theory for One-dimensional Schrödinger Operators with Steplike Finite-gap Potentials

We develop direct and inverse scattering theory for one-dimensional Schrödinger operators with steplike potentials which are asymptotically close to different finite-gap potentials on different half-axes. We give a complete characterization of the scattering data, which allow unique solvability of the inverse scattering problem in the class of perturbations with finite second moment.

متن کامل

A Class of Matrix-valued Schrödinger Operators with Prescribed Finite-band Spectra

We construct a class of matrix-valued Schrödinger operators with prescribed finite-band spectra of maximum spectral multiplicity. The corresponding matrix potentials are shown to be stationary solutions of the KdV hierarchy. The methods employed in this paper rely on matrix-valued Herglotz functions, Weyl–Titchmarsh theory, pencils of matrices, and basic inverse spectral theory for matrix-value...

متن کامل

On Spectral Theory for Schrödinger Operators with Strongly Singular Potentials Fritz Gesztesy and Maxim Zinchenko

We examine two kinds of spectral theoretic situations: First, we recall the case of self-adjoint half-line Schrödinger operators on [a,∞), a ∈ R, with a regular finite end point a and the case of Schrödinger operators on the real line with locally integrable potentials, which naturally lead to Herglotz functions and 2 × 2 matrix-valued Herglotz functions representing the associated Weyl–Titchma...

متن کامل

On Spectral Theory for Schrödinger Operators with Strongly Singular Potentials

We examine two kinds of spectral theoretic situations: First, we recall the case of self-adjoint half-line Schrödinger operators on [a,∞), a ∈ R, with a regular finite end point a and the case of Schrödinger operators on the real line with locally integrable potentials, which naturally lead to Herglotz functions and 2× 2 matrix-valued Herglotz functions representing the associated Weyl–Titchmar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004